Attention Calibration for Transformer-based Sequential Recommendation

Peilin Zhou*
The Hong Kong University
of Science and Technology
(Guangzhou)
zhoupalin@gmail.com

Qichen Ye*
Peking University
yeeeqichen@pku.edu.cn

Yueqi Xie The Hong Kong University of Science and Technology yxieay@connect.ust.hk Jingqi Gao Upstage mrgao.ary@gmail.com

Shoujin Wang University of Technology Sydney shoujin.wang@uts.edu.au Jae Boum Kim
The Hong Kong University
of Science and Technology
jbkim@cse.ust.hk

Chenyu You Yale University chenyu.you@yale.edu Sunghun Kim[†]
The Hong Kong University
of Science and Technology
(Guangzhou)
hunkim@cse.ust.hk

code: https://github.com/AIM-SE/AC-TSR.

Introduction

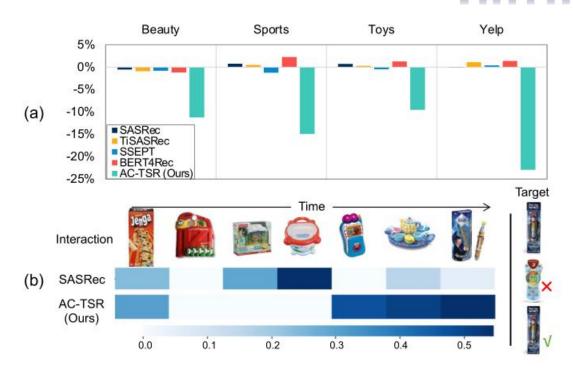


Figure 1: (a) Removing the highest attention weight from transformer-based SRS does not lead to a significant decrease in model performance and even improves performance in some cases; (b) Visualization of the attention weights from SASRec and our proposed AC-TSR.

After careful and in-depth analysis, we found the aforementioned unreliable or inaccurate assignment of attention weights could be mainly attributed to the following two factors:

- (1) Sub-optimal position encoding.
- (2) Noisy input.

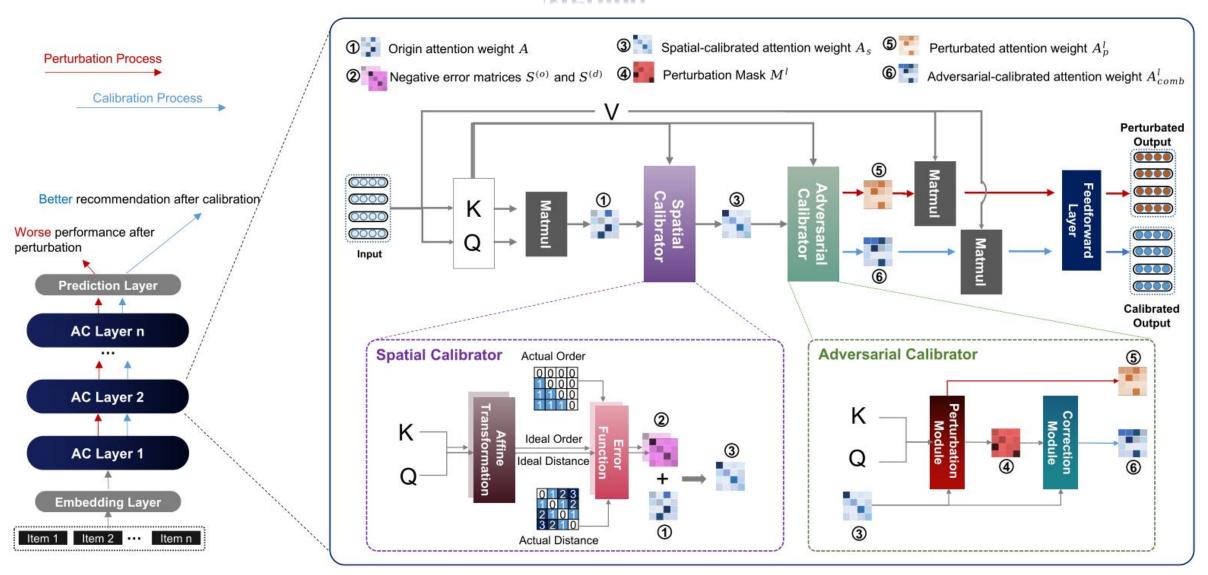
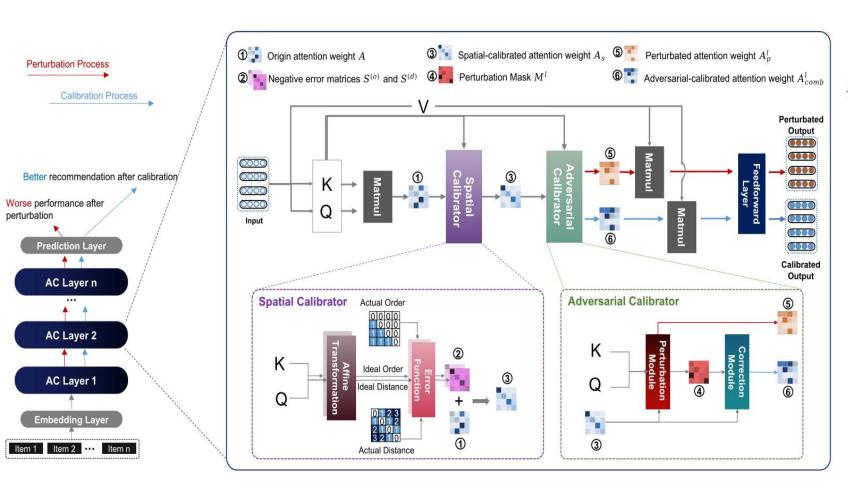
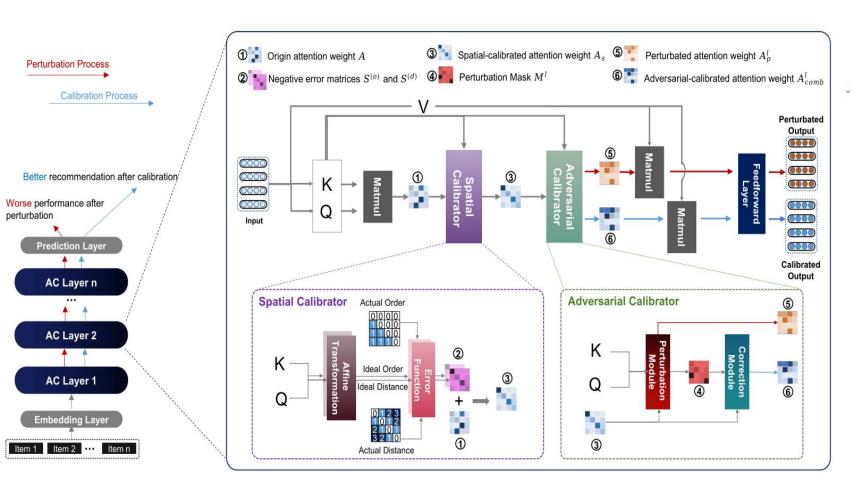



Figure 2: Overview of the proposed AC-TSR framework.

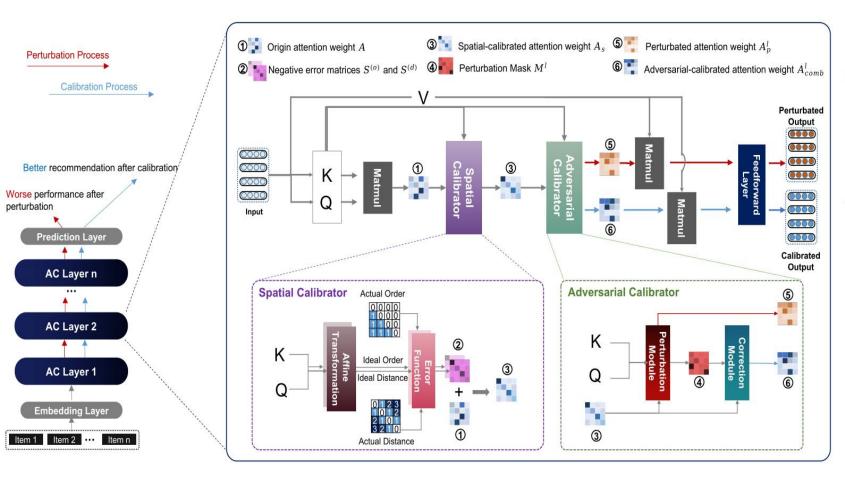

$$\mathbf{H} = \text{Self-Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}}\right)\mathbf{V}$$
 (1)

$$F_i = FFN (H_i) = ReLU (H_i W_1 + b_1) W_2 + b_2$$
 (2)

$$\mathbf{F}_{i}^{L} = \mathrm{FFN}\left(\mathbf{H}_{i}^{L}\right) \tag{3}$$

$$\hat{\mathbf{y}} = \operatorname{softmax} \left(\mathbf{T} \mathbf{F}_n^{LT} \right) \tag{4}$$

$$\mathcal{L} = -\sum_{i=1}^{|\mathcal{I}|} y_i \log(\hat{y}_i)$$
 (5)

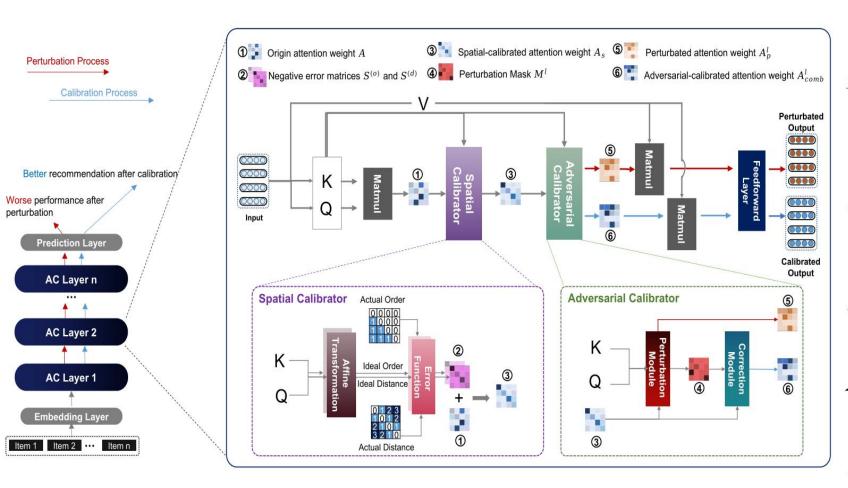

$$o_{ij} = \mathbb{I}(i < j) = \begin{cases} 1, & i < j \\ 0, & otherwise \end{cases}$$
 (6)

$$d_{ij} = \ln(1 + |i - j|) \tag{7}$$

$$\hat{o}_{ij} = \text{sigmoid}\left(\text{affine}^{(o)}\left(\left[\mathbf{q}_i^l; \mathbf{k}_j^l\right]\right)\right)$$
 (8)

$$\hat{d}_{ij} = \operatorname{affine}^{(d)} \left(\left[\mathbf{q}_i^l; \mathbf{k}_j^l \right] \right) \tag{9}$$

$$s_{ij}^{(o)} = o_{ij} \ln (\hat{o}_{ij}) + (1 - o_{ij})(1 - \ln (\hat{o}_{ij}))$$
 (10)


$$s_{ij}^{(d)} = -\frac{\theta^2 \left(d_{ij} - \hat{d}_{ij} \right)^2}{2} \tag{11}$$

$$\mathbf{A}_{s} = \operatorname{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d}} + \mathbf{s}^{(o)} + \mathbf{s}^{(d)} \right) \quad (12)$$

$$\mathbf{A}_{p}^{l} = \mathbf{M}^{l} \odot \mathbf{A}_{s}^{l} + (1 - \mathbf{M}^{l}) \odot \mu \tag{13}$$

$$\mathbf{M}^{l} = \operatorname{sigmoid} \left(\frac{\mathbf{Q}^{l} \mathbf{W}_{Q_{p}}^{l} \left(\mathbf{K}^{l} \mathbf{W}_{K_{p}}^{l} \right)^{T}}{\sqrt{d}} \right)$$
(14)

$$\mathbf{A}_c^l = \mathbf{A}_s^l \odot e^{1 - \mathbf{M}^l} \tag{15}$$

$$A_{comb}^{l} = g * A_{s}^{l} + (1 - g) * A_{c}^{l}$$
 (16)

$$\mathbf{g} = \sigma \left(\mathbf{Q}^l \mathbf{W}_g^l + \mathbf{b}_g^l \right) \tag{17}$$

$$\mathcal{L}_P = -\sum_{i=1}^{|\mathcal{I}|} y_i \log \left(\hat{y}_i^P \right) \tag{18}$$

$$\mathcal{L}_C = -\sum_{i=1}^{|\mathcal{I}|} y_i \log \left(\hat{y}_i^C\right) \tag{19}$$

$$\mathcal{L}_{P_{final}}\left(\theta^{P}\right) = -\mathcal{L}_{P}\left(\theta\right) + \alpha\mathcal{L}_{norm}\left(\theta^{P}\right) \tag{20}$$

$$\mathcal{L}_{norm}\left(\theta^{P}\right) = \sum_{l=0}^{L} ||1 - \mathbf{m}^{l}||_{2}$$
 (21)

$$\mathcal{L}_{final} = \mathcal{L}_{P_{final}} + \mathcal{L}_{C}$$
 (22)

Table 1: Overall performance. The highest results are denoted in bold, while the runner-up results are underscored. "*" denotes the statistical siginificance for p < 0.01 compared to the best baseline methods with paired t-test.

	Beauty					Spo	orts		Toys Yelp			elp				
SR Model	Red	call	ND	CG	Re	call	ND	CG	Re	call	ND	CG	Re	call	ND	CG
	@10	@20	@10	@20	@10	@20	@10	@20	@10	@20	@10	@20	@10	@20	@10	@20
PopRec	0.0157	0.0242	0.0076	0.0097	0.0146	0.0244	0.0078	0.0103	0.0105	0.0172	0.0060	0.0077	0.0099	0.0161	0.0051	0.0067
BPR	0.0375	0.0590	0.0168	0.0222	0.0302	0.0480	0.0144	0.0188	0.0344	0.0560	0.0151	0.0205	0.0589	0.0830	0.0324	0.0384
GRU4Rec	0.0654	0.1002	0.0322	0.0410	0.0386	0.0609	0.0195	0.0251	0.0449	0.0708	0.0221	0.0287	0.0418	0.0679	0.0206	0.0271
Caser	0.0474	0.0731	0.0239	0.0304	0.0227	0.0364	0.0118	0.0153	0.0361	0.0566	0.0186	0.0238	0.0380	0.0608	0.0197	0.0255
LightSANS	0.0770	0.1177	0.0358	0.0461	0.0509	0.0781	0.0226	0.0294	0.0768	0.1116	0.0354	0.0442	0.0630	0.0904	0.0385	0.0453
Locker	0.0802	0.1197	0.0365	0.0464	0.0508	0.0753	0.0225	0.0286	0.0755	0.1094	0.0345	0.0430	0.0603	0.0869	0.0380	0.0446
SASRec	0.0779	0.1152	0.0353	0.0447	0.0504	0.0760	0.0224	0.0289	0.0776	0.1100	0.0352	0.0434	0.0618	0.0879	0.0387	0.0453
w/ AC	0.0817*	0.1218*	0.0375*	0.0454*	0.0532*	0.0817*	0.0235*	0.0307*	0.0825*	0.1166*	0.0371*	0.0456*	0.0664*	0.0955*	0.0407*	0.0480^{*}
Improve.	4.88%	5.73%	6.23%	1.57%	5.56%	7.50%	4.91%	6.23%	6.31%	6.00%	5.40%	5.07%	7.44%	8.65%	5.17%	5.96%
BERT4Rec	0.0557	0.0868	0.0279	0.0358	0.0313	0.0502	0.0155	0.0202	0.0489	0.0769	0.0253	0.0324	0.0467	0.0710	0.0264	0.0325
w/ AC	0.0628*	0.0929*	0.0318*	0.0394*	0.0381*	0.0607*	0.0196*	0.0253*	0.0643*	0.0924*	0.0339*	0.0410*	0.0481*	0.0769*	0.0265*	0.0337*
Improve.	12.73%	7.03%	13.98%	10.06%	21.73%	20.92%	26.45%	25.25%	31.49%	20.16%	33.99%	26.54%	3.00%	8.31%	0.38%	3.69%
SSE-PT	0.0587	0.0936	0.0278	0.0366	0.0363	0.0580	0.0184	0.0239	0.0560	0.0837	0.0255	0.0325	0.0556	0.0779	0.0323	0.0379
w/ AC	0.0629*	0.1001*	0.0293*	0.0387*	0.0379*	0.0589*	0.0191*	0.0244*	0.0614*	0.0896*	0.0282*	0.0353*	0.0565*	0.0821*	0.0330*	0.0394*
Improve.	7.16%	6.94%	5.40%	5.74%	4.41%	1.55%	3.80%	2.09%	9.64%	7.05%	10.59%	8.62%	1.62%	5.39%	2.17%	3.96%
TiSASRec	0.0794	0.1208	0.0356	0.0461	0.0523	0.0799	0.0230	0.0300	0.0819	0.1171	0.0367	0.0456	0.0618	0.0909	0.0387	0.0460
w/ AC	0.0823*	0.1227*	0.0373*	0.0474*	0.0548*	0.0837*	0.0241^{*}	0.0313*	0.0831*	0.1208*	0.0375*	0.0470^{*}	0.0654*	0.0939*	0.0401*	0.0473*
Improve.	3.65%	1.57%	4.78%	2.82%	4.78%	4.76%	4.78%	4.33%	1.47%	3.16%	2.18%	3.07%	5.83%	3.30%	3.62%	2.83%

Table 2: Model Complexity.

Model	# Parameters	Inference speed	Recall@20				
Model	# 1 at attiteters	interence speed	Beauty	Sports	Toys	Yelp	
SASRec	0.87M	2482.33/s	0.1152	0.0760	0.1100	0.0879	
AC-SASRec	0.90M	917.54/s	0.1218	0.0817	0.1166	0.0955	
AC-SASRec-lite	0.87M	2482.33/s	0.1164	0.0768	0.1150	0.0913	

Table 3: Ablation study of AC-TSR on Beauty dataset.

Sattings	Sp	atial	Adv.	Re	call	NDCG		
Settings	order	distance	Auv.	@10	@20	@10	@20	
(A)	~	1	1	0.0817	0.1218	0.0375	0.0476	
(B)	~	X	-	0.0791	0.1210	0.0364	0.0470	
(C)	X	1	~	0.0792	0.1201	0.0372	0.0475	
(D)	X	X	~	0.0800	0.1202	0.0367	0.0469	
(E)	1	1	X	0.0802	0.1197	0.0365	0.0464	
(F)	1	X	X	0.0776	0.1168	0.0353	0.0452	
(G)	X	1	X	0.0806	0.1188	0.0367	0.0463	
(H)	X	×	X	0.0779	0.1152	0.0353	0.0447	

Table 4: Impact of different positional encoding strategies. The SASRec is chosen as the backbone.

Position Encoding Strategy	Spe	orts	Toys		
Position Encouring Strategy	Recall@20	NDCG@20	Recall@20	NDCG@20	
Remove Position	0.0775	0.0294	0.1170	0.0456	
Absolute Position	0.0760	0.0289	0.1100	0.0434	
Relative Position	0.0753	0.0285	0.1172	0.0461	
Decoupled Position	0.0769	0.0295	0.1153	0.0449	
Spatial Calibrator (Ours)	0.0785	0.0298	0.1193	0.0462	



Figure 3: Impact of different aggregation strategies in Correction Module.

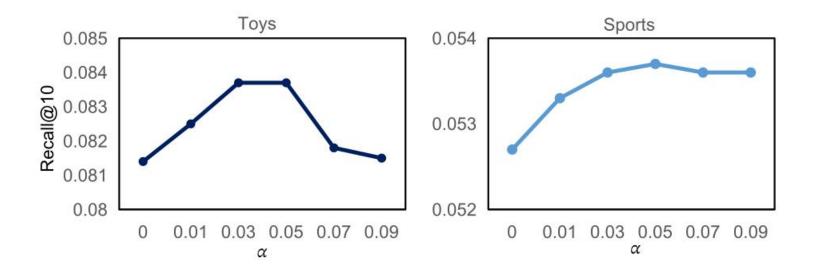


Figure 4: Effect of balance parameter α .

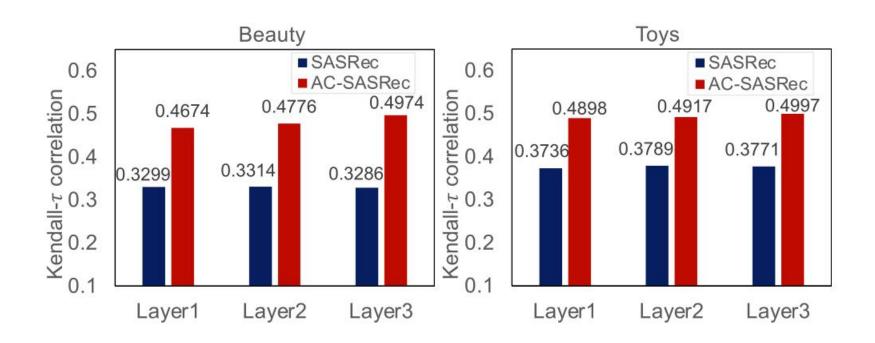


Figure 5: Comparison of the mean Kendall- τ correlation between attention weights and gradient importance measures. The results verify that our AC method can improve Kendall- τ correlation by a large margin.

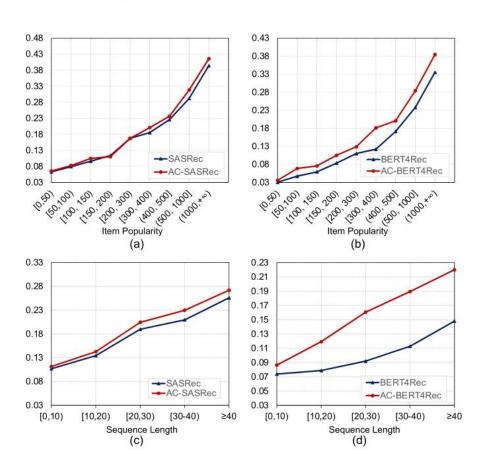


Figure 6: Performance comparison (Recall@20) between ACTSR and TSR under different sequence lengths (i.e., number of training interactions of users) and item popularity (i.e., number of training interactions of items) on Amazon Beauty.

Thanks